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Abstract

A multiple-kind lottery model is presented for use in determining whether species density distributions in parasite
species assemblages reveal regularly occurring species-to-species interactions. The model utilizes a recurrence vector
algorithm to rapidly calculate expected frequencies of species per host classes in such assemblages. These
calculations have been a computational problem because the probability of a host individual acquiring one species of
parasite is not necessarily equal to that of acquiring another species. Thus although the number of possible ways for
a host to acquire x parasite species of a possible n is given by the familiar binomial expansion term n! /[x'(n -x),
each of these ways can have a different probability. The model is applicable to any system that mimics a
multiple-kind lottery in which (1) successes are independent events and (2) it is possible to fail completely to acquire
any parasites or their analogs. The algorithm is thus a null model for species density distributions in general
Application of the model is illustrated by host/ parasite systems involving snails and trematodes, fish and their
protozoan and platyhelminth parasites, and a relatively rich assemblage of parasites in bats.
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1. Introduction bers are interactive is still a matter of controversy
(Price, 1984, 1987; Holmes and Price, 1986). Nu-

Parasite species assemblages present a number merous investigators have used similarity indices
of problems that have made interpretation of to compare parasites from various host species
field data somewhat frustrating. For example, and populations (e.g. Bush, 1990). However, such
hosts may differ significantly in the diversity of comparisons do not lead naturally to further stud-
their parasite fauna (Kennedy et al., 1986), re- ies aimed at discovery of mechanisms by which
gional and local diversity may or may not be assemblage structure is determined. Similarly, the
interrelated (Goater et al., 1987; Janovy et al., concept of “core” and “satellite” species, at least
1992), and the extent to which assemblage mem- as used by parasitologists, describes rather than

explains the origin and nature of assemblage
structure (cf. Pence and Windberg, 1984; Stock
and Holmes, 1987a,b, 1988).
* Corresponding author. Species density frequency distributions con-
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structed from field data on species-poor parasite
assemblages often fit a histogram predicted by a
random selector model (Goater et al., 1987; Dob-
son, 1990; Janovy et al, 1990, 1992). In this
lottery-type model the host selects parasites, at
random, from a multiple-kind array in which (1)
the relative probability of becoming infected may
be different for each parasite species, and (2) the
array is not completely filled with parasites (see
fig. 5 in Janovy et al., 1992). Thus it is possible for
a host to select a number of times, from the
array, without getting infected. Independence of
parasitic events, i.e. the occurrence of a species,
is implicit in this model.

Although competition between assemblage
members frequently has been inferred from field
data on species density distributions (Dobson,
1985; Stock and Holmes, 1987a), the follow-up
experiments generally have not been done, or
sometimes cannot be done because of the logisti-
cal difficulties of working with certain systems,
e.g. as in the migratory bird studies of Bush and
Holmes (1986a,b). And in those cases where as-
semblage members appear to interact, the obser-
vations often can be explained by ecological fac-
tors (e.g. intermediate hosts share microenviron-
ments) or heterogeneity in summarized published
data sets (Goater et al., 1987; Janovy and Hardin,
1988).

Species density frequency distributions have
not been presented very often either in original
or review papers (but see Lotz and Font, 1985,
1991), although it is obvious from published data
sets that the information necessary to calculate
the theoretical frequencies, for comparison to
observed ones, has been gathered (see references
" in Esch et al.,, 1990). These distributions are,
however, potentially of great utility for four rea-
sons: (1) they routinely fit discrete approxima-
tions of normal curves, thus allow rather standard
parametric analyses (unlike many parasite popu-
lation and community descriptors); (2) this prop-
erty facilitates meaningful statistical comparisons
between parasite assemblages in related, sym-
patric hosts, or in different populations (or sub-
populations) of a single host species; (3) because
of the second reason, they are easily incorporated
into experimental designs; and (4) they provide a

null model for use in testing for the role of
species-to-species interactions in providing struc-
ture to a species assemblage.

The large number of parasite species found in
some host species’ populations, however, makes
the direct calculation of expected frequencies
prohibitively laborious without a time-efficient
method, and the few workers who have used
species density distributions as research tools have
either fit them to Poissons (Goater et al., 1987) or
derived them from Monte Carlo simulations (Lotz
and Font, 1991). Although some parasite species
density distributions fit a Poisson (Dobson, 1990),
they are not in fact Poisson distributions because
success and failure (p, 1—p) vary with each
species in the assemblage. For example, in an
assemblage of n parasite species, the probability
of a 3-species infection is not given by the famil-
iar combination-permutation formula for n items
taken 3 at a time multiplied by p*(1 — p)*~3, but
varies depending on which 3 species of parasites
are involved. In addition, in the case of parasites,
different transmission mechanisms and life cycles
mean that infection events are not equivalent,
regardless of their potential statistical independ-
ence. The calculations are a practical problem
because many parasite species assemblages con-
tain more than 10 species. Expected frequencies
for an assemblage with 15 species, such as re-
ported by Leong and Holmes (1981), require cal-
culations for 32 768 combinations, a time-consum-
ing task even for most personal computers.

The algorithm presented in this paper solves
the calculation time problem well enough to al-
low theoretical species density distributions to be
used as a research tool even with highly diverse
assemblages. This solution deménistrates the util-
ity of handling parasite assemblage data as species
density distributions fit to the null model of no
interspecific interaction. The general methods
presented are applicable to any analogous multi-
ple-kind array.

2. The concept

Conceptually, the species density model con-
sists of a multiple-kind array of slots, some of
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which are filled, and some of which are empty. A
host individual “selects” parasites from this array
in a uniform random manner. Each kind (of
parasite) has an equal range of slots. The parasite
kinds can differ in the proportion of their allotted
slots filled, i.e. in their relative probabilities of
selection. In a three-parasite species array, for
example, with species A, B and C, a host individ-
ual can be infected with two kinds of parasites in
three different ways: A and B, A and C, B and C.
The null hypothesis of no interspecific interac-
tions demands that A, B and C be independent
events. In contrast to the case of a binomial
expansion, each of the three two-parasite species
infections carries a unique probability (which are
permitted, however, to be equal). Host classes are
established on the basis of number of parasite
species present (0, 1, 2,..., n). The number of
such unique probabilities for any one host class is
given by the familiar

nl/[x!(n-x)!],

where n is the number of parasite species in the
array and x is a parasite species per host class.
These unique probabilities must be summed to
obtain the expected proportion of a host sample
with x kinds of parasites. The number of kinds,
or in this example parasite species, can vary ac-
cording to the system under investigation.

A theoretical species density distribution is
obtained by multiplying the parasite species per
host class probabilities by the number of hosts in
the sample. The parameter values of this discrete
distribution will change with changing relative
probabilities of infection. Observed frequencies
can be tested against the expected by means of
chi-square. Effective interspecific interactions
should appear as departures from the expected,
e.g. as when parasite species exclude one another
or are transmitted together. Such interactions
may not appear as departures from expected if
occurrence probabilities of the interacting pair
are very high or very low; however, in such cases,
one must defend the assertion that interactions
are of evolutionary or ecological significance. A
rigorous test of the null hypothesis of no interspe-
cific interaction requires that the same biological
system be studied with a series of homogeneous

samples, preferably taken over a range of abiotic
conditions.

3. The algorithm

Expected species density distributions are
founded on independent probabilities of success-
ful infection for each parasite species in the com-
munity. This condition implies that the preva-
lence of a parasite species in a host population is
equivalent to the probability that any given host
in the population will be infected by that parasite
species. As host sample size increases, the Cen-
tral Limit Theorem suggests that prevalence be-
comes increasingly indicative of the true probabil-
ity of infection. Therefore, the event of infection
by a single parasite species in any given host is
probabilistically a single Bernoulli trial in which
success (p) is equal to the parasite species preva-
lence in the host population, and failure (q) is
equal to one minus the parasite species preva-
lence in the host population. Consider a parasite
community of N species: there exists a series of
values that describes the probability of successful
infection by each parasite species, py,..., Dn»
where p, = the prevalence of parasite species 1,
p, =the prevalence of parasite species 2, etc.
Expected species density distributions differ from
Poisson distributions in that they are accumula-
tions of multiple Bernoulli trials that do not share
a common probability of success. None the less,
as modified Bernoulli trials, the outcomes are
still independent and binary in nature and are
suitable for the generation of an expected fre-
quency distribution.

The expected species density distribution for
such a system is constituted by the expected fre-
quency of host inclusion in each host class. Con-
sider a host/parasite system with N parasite
species and any number of host individuals, in
which a host individual can be infected with 0, 1,
2,..., N parasite species. If host class, C, is
defined by the number of parasite species pre-
sent, then host class also takes its values from the
range of whole numbers 0, 1,..., N. For each
host class, C, P(C), is the probability that any
given host will be infected by exactly C of N
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parasite species without regard to parasite species
combination, that is, P(C)y = the probability of
successful infection by C parasite species in any
given host if there are N parasite species in the
community at large. P(C), is the accumulated
probability of each unique combination of C par-
asites species drawn from N parasite species,
each with a unique probability of infection as
described above. The expected probability distri-
bution for such a system can be calculated and
stored in a recurrence vector using a series of
iterative algorithms.

Infection by any of N parasite species is an
independent Bernoulli trial, thus parasite species
can be added to the expected distribution one-by-
one, without regard to the order of their addition.
For computational purposes we can build the
expected distribution using a step-wise recur-
rence vector, beginning with the distribution for
single available parasite species and expanding
the distribution as each parasite species is added.
Such a vector can be visualized as an array of N
elements, where each element conceptually rep-
resents a host class, C. On completion of the
vector, each element contains P(C),, the proba-
bility of successful infection by any unique combi-
nation of C parasite species in any given host if
there are N parasite species in the commugity at
large. The vector is built using the following set
of iterative algorithms:

Where

N= the number of parasite species that have
been added to the distribution;

P(n)y = the probability of infection by n parasite
species when N parasite species have
been added to the distribution;

D= the probability of successful infection by
the ith parasite species; and,
q;= (1 — p;) = the probability of no infection

by the ith parasite species.
When the first parasite species is added, the
vector is established:

For N=1:
P(O)N=P(0)1 =4qN=4y (1)
P(1)y=P(1),=pn=p;- (2

When each additional parasite'is added to the
vector host class is incremented, and three algo-

rithms are used to recalculate the distribution.
For all N> 1, where C goes from 0, 1,... N,
if C=0:

P(C)ny=P(0)n=P(0) n-19n; (3)
if0<C<N:
P(i)y=P(i = 1) ny-1oy+ P(i)N-14Nn (4)

for all i, where i goes from 1to N—1;

if C=N:

P(C)N=P(N)N=P(N—1)N-1PN- &)
The following example demonstrates the algo-

rithms for a system with three parasite species.

When the first parasite species is added, the

vector is established with two classes (0 and 1)
using Eqgs. 1 and 2:

P(0),=4q,,
P(1);=p,.

When the second parasite species is added, the 0
class is calculated using Eq. 3:

P(0);=P(0):9, =44,

The 1 class is calculated using Eq. 4:
P(1);=P(0),p, +P(1)19,=4,P2 + D19>-
The 2 class is calculated using Eq. 5:
P(2),=P(1),p,=p,P;.

When the third parasite species is added, the 0
class is calculated using Eq. 3:

P(0)3 =P(0)295 = 9,9,95-

The 1 class and the 2 class are calculated using

Eq. 4:

P(1);=P(0)2p3+P(1)295
=q,9,P3 +43(9,P2+P142)
=q,9,P3+q,P2493 +P19,43,

P(2);=P(1);p; +P(2)245
=p3(9,p2+P142) +P1P2q3
=q,P2P3+P192P3 +D1D245.

The 3 class is calculated using Eq. 5:

P(3); =P(2),p3=p,P,P3.

The recurrence vector now holds four classes:
class 0 holds the probability of no infection, class
1 holds the probability of infection by exactly one
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parasite species, class 2 holds the probability of
infection by exactly two parasite species, and class
3 holds the probability of infection by all three
parasite species. The summation of these four
probabilities approaches 1. The expected fre-
quency distribution is obtained by multiplying
each class probability by the total observed host
sample size.

The recurrence vector is stored in a double
precision matrix with one element for each para-
site species present in the system. The algorithm
presented here has been implemented by the
authors using QuickBASIC 4.5 (Microsoft Corpo-
ration, Redmond, WA).

4. Application

This species density model, the algorithm, and
the underlying ideas, are applicable to systems
beyond those involving parasites and hosts. In
addition, the short calculation time suggests this
algorithm may prove particularly useful in sys-
tems involving large numbers of species. Virtually
any sampling scheme, e.g. a grid, that mimics

Table 1

selection from a multiple kind array can be tested
for fit to the null hypothesis of independence
using an algorithm such as the one presented.
For example, studies of immigration after distur-
bance, e.g. as in those of heterogeneity in burned
prairie (Collins, 1992), typically use grids or cen-
sus points on transects. Each potential immigrant
species has a probability of successfully occupying
a sampling unit. Thus census points and grid
squares are the analogs of host individuals. Re-
gardless of the system to which the model is
applied, however, the major requirement is for
homogeneity. For example, assume one is repli-
cate sampling a grid and assessing the species
density distributions of grid units. A homogenous
field sample would consist of a single census
conducted- within a time shorter than the least
time required for species replacement or colo-
nization of an individual grid square. The study
design would have to include enough, presumably
replicate, census points to generate a meaningful
distribution. That number is dictated in part by
the potential number of colonizing species. Given
these constraints, a series of homogeneous sam-
ples over time should reveal whether dynamic

Observed (O) and expected (E) species density distributions for the parasite species assemblage in a pulmona'te snail (Physa gyrina)

Sampling date Species /host classes Chi-sq Par
0 1 2 3 4 5 6 ’

Apr 91 (O) 86 23 7 0 0

Apr 91 (E) 82 32 3 0 0 8.060 ns

May 91 (O) 41 64 15 1 0

May 91 (E) 43 58 17 2 0 1.449 ns

June 91 (O) 37 65 11 0 0

June 91 (E) 42 55 15 1 0 4.480 ns

July 91 (O) 44 54 20 0 0 -—

July 91 (E) 43 57 16 2 0 3.181 ns

Aug 91 (O) 65 47 7 1 0

Aug 91 (E) 66 45 9 1 0 0.548 ns .

Sept 91 (O) 78 35 9 0 0

Sept 91 (E) 82 37 3 0 0 12.303 - <0.05

Oct 91 (O) 56 50 11 1 0 :

Oct 91 (E) 57 48 12 1 0 0.184 ns

Nov 91 (O) 94 17 3 0 0

Nov 91 (E) 94 19 1 0 0 4211 - ns

Dec 91 (O) 106 10 (] 0

Dec 91 (E) 106 10 0 0 0 0 ns

Data from Snyder and Esch (1993). Expected frequencies calculated according to the algorithm presented in this paper. Parasite

species are larval trematodes.
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processes are at work to alter the species density
profile of the system.

Biological phenomena should be manifested as
species-dependent density distributions. Interspe-
cific interactions significant enough to influence
the species makeup of an assemblage over evolu-
tionary time should be evident in stable but unex-
pectedly high or low frequencies of certain classes,
i.e. departure from the null model, manifested
over a range of abiotic conditions. The data must
be collected and analyzed as a series of homoge-
neous samples. Failure to obey the homogeneity
requirement results in data sets in which poten-
tial species-to-species interactions are masked, or
false interactions._are suggested, by heteroge-
neous host—parasite encounter conditions. Types
of interactions other than co-occurrence are not
" addressed by this paper. Nor is any claim made
that the species density distribution is the only
device for detecting or analyzing interspecific in-
teractions.

Data sets to illustrate the application are pre-
sented from a variety of host/parasite systems
(Tables 1-3). In no case is a mechanism for
structuring the species density distribution pro-
posed, but in every case departures from the null
model are recognized as proximal, sometimes iso-
lated, events, resulting from perturbations of a
random selector/ multiple-kind array system.

Thus the overall dynamic pattern in these systems
is one in which species density distribution — one
aspect of community structure - is dictated by
relative probabilities of infection (colonization).
Claims for other organizing forces, e.g. competi-
tion, should be supported by regular and similar
departures from that predicted by the null model,
in a series of homogeneous samples.

The snail data (Table 1) are from a study of
larval trematode species in Physa gyrina from a
single pond (Snyder and Esch, 1993). Snail/
trematode systems are of interest in this context
because of the well-established fact of interspe-
cific competition between larval trematodes in
snails, specifically a hierarchy of predation based
in part on larval size (a genetically determined
trait) (Kuris, 1990). In the Table 1 data, the single
departure from the null model predictions, among
a series of homogeneous samples, is one in which
there are more heavily infected hosts than pre-
dicted, hardly evidence for serious interspecific
competition. In general, in snail/ trematode sys-
tems, prevalence of any one parasite species is
low and on that basis, multiple infections are thus
predicted to be few, regardless of the fate of
co-occurring species.

The Fundulus zebrinus data (Table 2) are from
a long-term study of parasite population and as-
semblage dynamics in that species in the Platte

Table 2
Observed (Obs) and expected (Exp) species density distributions for the parasite species assemblage in 2 freshwater fish (Fundulus
zebrinus)
Sampling Species/host classes Chi-sq Phi
date/site 0 1 2 3 4 5 6 7
July 19, 1982-Aug 2, 1982 (Roscoe) o

Obs 0 0 0 0 9 10 19 4

Exp 0 0 0 1 5 16 18 3 6.84 ns
July 21, 1982-Aug 5, 1982 (Maxwell)

Obs 1 4 8 12 7 9 2 1

Exp 0.2 2 7 13 13 7 2 0.2 11.96 ns
July 25, 1983 (Roscoe)

Obs 0 2 2 2 5 7 2 1

0 1 4 7 6 2 0 0 23.24 <0.05

June 19, 1988 (Roscoe)

Obs 0 4 8 6 5 0 0 1

Exp 0 4 8 7 3 1 0 0 3.48 ns

Data from Janovy and Hardin (1988) and unpublished collections. Expected frequencies calculated according to the algorithm

presented in this paper.
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River of Nebraska, a braided river with substan-
tial fluctuations in streamflow over several time
scales. The first five years of this work was pub-
lished in Janovy and Hardin (1988), and a diver-
sity model developed to explain long-term assem-
blage dynamics used an additional two years’
worth of data. At present, the parasite assem-
blages from 49 homogeneous samples of F. zebri-
nus, have been analyzed, covering an 11-year
period (1982-1992 inclusive) and involving 995
fish from a single collecting site. Forty seven of
those 49 samples fit the null model of a multiple-
kind array sampler described in this paper and in
Janovy et al. (1992). The two assemblages that
did not fit were. from July 25, 1983 and August
18, 1992; the former had more heavily infected
fish than expected, the latter had more fish in the
3- and 4-species/ host classes than expected (out
of 7 possible species). Both departures are inter-
preted as being of abiotic origin. The July 25,
1983 sample is one of those given in Table 2.
Table 3 shows the results of applying the algo-
rithm to host/parasite systems that are much
richer in parasite species than either the pul-
monate snail or F. zebrinus ones. The bat data in

Table 3

Table 3 are from Lotz and Font (1991), although
from sub-sets assumed to be homogeneous be-
cause of collection dates and localities. The en-
tire samples reported in Lotz and Font (1991)
may be homogeneous, but because they were
collected over an extended time period, were not
used in Table 3. The bat parasite assemblages
have up to 18 parasite species per sample, al-
though obviously the mean number of parasites
per host is much lower than that figure.

These three data sets (Tables 1-3) are illustra-
tive of the general structure of parasite species
assemblages over a wide variety of systems. In
virtually all published parasite survey data sets,
prevalence of a parasitic infection varies with the
parasite species. Thus the probability of infection,
estimated by the prevalence, also varies by para-
site species. Data from Janovy and Hardin (1988)
further indicate that parasite species vary in their
response to large abiotic changes, e.g. order of
magnitude fluctuations in a river’s streamflow
over monthly and yearly periods. The parasite
species density distributions (Table 2), however,
still tend to fit those predicted by the multiple-
kind array model, as well as the distributions

Observed (Obs) and expected (Exp) species density distribution for the parasite species assemblage in Wisconsin bats

Sampling Species/host classes .
date 0 1 2 3 3 5 6 7 8 9 10 11 12
MLUC: May 5-June 10, 1981
Exp 0 0 0 0 1 3 5 5 3 1 0 0 0
Obs 0 1 0 1 1 3 3 3 3 1 0 0 2
Chi sq = 7.60(11) = ns
MLUC: June 7-July 13, 1986
Exp 0 0 1 3 6 6 4 2 0 0 0-- -0 0
_Obs 0 1 2 2 5 4 2 2 2 0 1 0 0
Chi sq =5.17(11) = ns
EFUS: January 11-March 19, 1980
Exp 0 0 1 4 6 7 5 3 1 0 0 0 0
Obs 0 0 3 3 5 7 4 4 2 0 0 0 0
Chi sq =5.95(11) = ns
EFUS: November 10-January 15, 1981
Exp 0 0 1 2 3 4 3 2 1 0 0 0 0
Obs 0 1 1 1 3 1 4 2 2 0 0 0 0
Chi sq = 7.41(11) = ns

Bat species are abbreviated by capital letters: MLUC = Myotis lucifugus; EFUS = Eptesicus fuscus; MLUC from 1986 were all
collected in Dunn County, Wisconsin; the rest were all collected from Eau Claire County, Wisconsin. Data are from the large
collections reported in Lotz and Font (1991). Expected frequencies calculated according to the algorithm presented in this paper.
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generated by the algorithm presented in this pa-
per, although the means and variances of these
distributions vary with time and streamflow.
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