
 

 
The Descriptive Properties of Some Models for Density Dependence
Author(s): T. S. Bellows
Source: Journal of Animal Ecology, Vol. 50, No. 1 (Feb., 1981), pp. 139-156
Published by: British Ecological Society
Stable URL: https://www.jstor.org/stable/4037
Accessed: 12-12-2018 16:12 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

British Ecological Society is collaborating with JSTOR to digitize, preserve and extend access
to Journal of Animal Ecology

This content downloaded from 192.132.7.13 on Wed, 12 Dec 2018 16:12:14 UTC
All use subject to https://about.jstor.org/terms



 Journal of Animal Ecology (1981), 50, 139-156

 THE DESCRIPTIVE PROPERTIES OF SOME MODELS
 FOR DENSITY DEPENDENCE

 BY T. S. BELLOWS JR*

 Department of Zoology, Imperial College Field Station,
 Ascot, Berkshire, England

 SUMMARY

 (1) The descriptive abilities of several difference equation models for density dependence
 have been examined, first by a qualitative comparison of their flexibility and secondly by
 considering their ability to describe thirty sets of data on density dependent mortality.

 (2) The qualitative comparison demonstrated that two of the models have forms which
 are particularly flexible. The quantitative comparison indicated that of these two, that
 due to Maynard Smith & Slatkin (1973) is better able to describe a wide range of data.

 INTRODUCTION

 It has been appreciated since the early work of Verhulst (1838) and Pearl & Reed (1920)
 that many biological populations exhibit negative feedback mechanisms which restrict
 their growth. These mechanisms, often referred to as density dependent processes, play
 an important role in determining the dynamical behaviour of such populations (May,
 Conway, Hassell & Southwood 1974) and consequently are also of importance when
 considering the construction of population models. There is a constant need for simple but
 general functions to describe density dependent processes; simple so that their properties
 may be determined analytically and general so that they are capable of describing the
 varied forms in which density dependence may occur.

 A number of difference equation models for describing density dependence have
 appeared in the literature, either as a means of quantifying density dependence (e.g.
 Ullyet 1950; Varley & Gradwell 1963; Hassell & Huffaker 1969; Hassell, Lawton &
 May 1976) or as regulatory functions in population models (e.g. Cook 1965; Pennycuik,
 Compton & Beckingham 1968; Varley & Gradwell 1968; Usher 1972; Maynard Smith
 & Slatkin 1973; Varley, Gradwell & Hassell 1973; Hassell 1975; May 1975). The
 characteristic dynamics of these models have been recently reviewed by May & Oster
 (1976), who have emphasized the range of possible dynamics shown by difference
 equation models. Although the models considered by May and Oster all show similar
 ranges of dynamical behaviour, they differ widely in their ability to describe different
 types of density dependence. This paper examines some of the different density dependent
 models in the literature and compares their descriptive abilities.

 The comparative review presented here follows two lines: (i) a qualitative consideration
 of the forms of density dependence described by each model and (ii) a quantitative
 comparison of the fit of several of the models to a number of sets of data showing
 density dependent mortality. The qualitative comparison begins with a consideration of
 different methods of graphical presentation of density dependence in data. This is
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 140  Models for density dependence

 followed by the derivation of a general difference equation model for density dependence
 and a discussion of the relationship between this general model and those existing in
 the literature. These two sections lead to a qualitative comparison of the forms of density
 dependence that the various models can describe. The data on which the quantitative
 comparison is based are presented next, and the results of fitting some of the models to
 the data are discussed. In this section, the views of Hassell, Lawton & May (1976)
 concerning the effects of density dependence in single-species populations are re-examined
 and their conclusions upheld. In the final section, the descriptive properties of the models
 are compared and some remarks about their potential uses are made.

 PRESENTING DENSITY DEPENDENCE DATA

 A variety of methods of graphically presenting density dependence data have appeared
 in the literature and a primary aim common to them all is to demonstrate whether or
 not the data show evidence of density dependence. A secondary, but also important,
 objective is to determine whether the data indicate a compensatory (contest competition
 in the sense of Nicholson (1954)) or an overcompensatory (scramble competition) process.
 Four common methods of presenting such data will be discussed here, with particular
 reference to data dealing with density dependent mortality.

 The most immediate method of presenting density dependence data is to plot the
 number of survivors S against the initial density N. Any deviation from a straight line
 through the origin indicates density dependence. Data plotted in this way usually show
 either a monotonic curve (contest competition, Figs l(a) and 7(a)) or a humped curve
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 FIG. 1. The relationship between number of survivors (mean + s.e.) and density for four stored
 product beetles. The fitted curves are from entry 5 of Table 1, S =dN/( + (aN)b). (a)
 Stegobium paneceum, d = 0-711, a = 0.110, b = 0.950. (b) Lasioderma serricorne, d = 0.806,
 a = 0.0114, b = 7.53. (c) Tribolium confusum, d = 0.610, a = 0.0116, b = 3.12. (d) Tribolium

 castaneum, d = 0-800, a = 0-0149, b = 4.21.
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 FIG. 2. The data of Fig. 1 expressed as proportion surviving (transformation on the means)
 against density. Fitted lines were obtained by transforming the predicted number of survivors
 to proportionate survival. (a) Stegobium paneceum. (b) Lasioderma serricorne. (c) Tribolium

 confusum. (d) Tribolium castaneum.

 (scramble competition, Figs 1 (b), (c), (d)). Another useful method is to plot proportionate
 survival S/N against density. Such plots often show a sigmoid relationship between S/N
 and N (Figs 2(b), (c)). Here there is a region of low density where proportionate survival
 is nearly constant at some density independent level, after which proportionate survival
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 FIG. 3. The data of Fig. 1 expressed as k-value (transformation on the means) against log
 density. Fitted lines were obtained by transforming the predicted number of survivors to k-value.
 (a) Stegobium paneceum. (b) Lasioderma serricorne. (c) Tribolium confusum. (d) Tribolium
 castaneum. (N.B. The overestimates of k-value at high densities of Lasioderma serricorne
 in (b) are due to the relatively small contribution of these data points to the fitting of the

 model to the original data in Fig. 1 (b).)
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 FIG. 4. The data of Fig. 1 expressed as k-value against density. Fitted lines were obtained
 by transforming the predicted number of survivors to k-value. (a) Stegobium paneceum.
 (b) Lasioderma serricorne. (c) Tribolium confusum. (d) Tribolium castaneum. (N.B. See note

 in legend of Fig. 3.)

 drops sharply. The density at which survival suddenly decreases has been termed the
 'critical density' by Hassell (1975). Proportionate survival may also decrease mono-
 tonically with density (Figs 2(a) and 5(a)). In a plot of proportionate survival against
 density, deviation from a line with zero slope indicates density dependence, but there is no
 simple interpretation of these plots which distinguishes between contest and scramble
 competition. Two further methods of presenting density dependence data are based
 on plotting proportionate survival on logarithmic scales (the k-value of Haldane (1949)
 and Varley & Gradwell (1960)). When k-value (= -log(S/N), where log indicates
 natural logarithms) is plotted against log density, density dependence is shown by deviation
 from a line with zero slope. Data plotted in this way often indicate linearly or exponen-
 tially (but not logarithmically) increasing curves (Figs 3 and 5(b)). At high densities the
 relationship between k-value and log density often appears nearly linear. When the
 slope of this linear portion of a k-value plot is near unity contest competition is implied,
 while a slope much greater than unity indicates scramble competition. The final method
 is that of plotting k-value against density (arithmetic scale). Such plots may show either
 logarithmically (Figs 4(a) and 5(c)) or exponentially (Figs 4(b), (c), (d)) increasing
 curves. When these plots appear logarithmic, contest competition is implied, while
 exponential plots indicate scramble competition. Density dependence is again shown
 by deviation from a line with zero slope.

 DENSITY DEPENDENCE IN MODELS

 Models describing density dependent mortality are often framed in difference equations
 of the form

 S = Nf(N)  (1)
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 FIG. 5. The plots of (a) proportionate survival against density, (b) k-value against log density
 and (c) k-value against density for Operophtera brumata (L.) (data from Varley & Gradwell
 1968). The fitted curves were obtained by transforming the predicted number of survivors

 (see Fig. 7(a)) to these measures of mortality.

 where S is the number of survivors, N is the initial number of individuals and f(N) is
 a function which relates proportionate survival to density. The function f(N) must take
 values in the range 0-1 for positive values of N.
 One approach to defining a general form for the function f(N) may be made by
 considering a differential equation of the form

 dN
 t = -Nu (N) (2)
 dt

 where N is the population size and u(N) is a function relating mortality rate to density.
 A homologous discrete time formulation of eqn (2) may be constructed by integrating
 at a fixed density, say No, to give

 N = No exp(--(No)t). (3)

 - --
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 Models for density dependence

 Here, No is the initial population size and Nt is the number of survivors at time t. When
 t is taken to be unity, eqn (3) may be written in the form of eqn (1),

 S = N exp(-,u(N)), (4)

 where S=Nt, N=No and f(N)=exp(-p,(N)). Isolating the mortality rate (,u(N))
 from eqn (4) gives

 u(N) = log(N/S), (5)

 which is the familiar k-value for mortality of Haldane (1949) and Varley & Gradwell
 (1960).

 A variety of models have been proposed in the literature with u(N) taking the different
 forms shown in Table 1. Only entry 4 has not been previously considered, although
 a homologous differential equation has been discussed by Goel, Maitra & Montroll
 (1971). Entry 4 arises when the following general relationship between mortality rate
 and density is postulated:

 ,u(N) = c + aN; a, b > O, c > 0. (6)

 Substituting eqn (6) into eqn (4) now gives the model

 S = N exp(-c - aNb),

 or

 S = dN exp(-aNb), d = exp(-c). (7)

 The parameters in eqn (7) are restricted such that 0 < d < 1 and a, b > 0. The function
 f(N) is now given byf(N) = d exp(-aNb).

 Although eqn (7) has three parameters, the parameter d only determines the level of
 density independent mortality. The density dependent form of the curve is solely deter-
 mined by the two parameters a and b. The parameter a is a scaling constant which
 determines, for a given value of b, the density at which proportionate mortality reaches
 a fixed value, while the parameter b determines the severity of the density dependence.
 Thus, increasing values of b imply movement along the continuum of contest-scramble
 competition towards more severe scramble. The precise relationship between these
 parameters and the type of competition implied is more easily discussed for the related
 model (see below) of entry 5 in Table 1. In this model the roles of the parameters a and b
 are the same as in eqn (7) but, in addition, a plot of k-value against log density is linear
 at high densities and reaches an asymptotic slope of b, thus providing a readily interpre-
 table relationship between this parameter and the type of competition implied (Varley,
 Gradwell & Hassell 1973; Hassell 1975, 1976). This relationship is more complex for
 eqn (7) as discussed more fully below.
 Figure 6 shows how changes in the parameters a and b in model 5 of Table 1 affect

 the shape of the plot of survivors against density and the plots of k-value against density
 and log density. When b = 1 (curves I) the number of survivors increases monotonically
 with density to an asymptotic maximum of 1/a (Fig. 6(a)), k-value increases log-
 arithmically with density (Fig. 6(b)) and k-value increases exponentially with log density
 reaching an asymptotic slope of b = 1 (Fig. 6(c)), all of which imply contest competition.
 For values of b > 1 (curves II and III), scramble competition is implied with mortality
 overcompensating at high densities, resulting in few survivors (Fig. 6(a)). The plot of
 k-value against density now shows an initial exponential increase which changes to a

 144
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 logarithmic increase at high densities (Fig. 6(b)), and the plot of k-value against log
 density increases exponentially, again reaching an asymptotic slope of b. Varying the
 parameter a effectively changes the scale of density on which the mortality acts (compare
 curves II and III); as the value of a increases (for a fixed b), the number of survivors
 at any given density decreases. More precisely, density dependence accounts for a 50%
 mortality when the initial density is 1/a.

 Similar interpretations can be made for eqn (7) concerning the effect of the parameters
 a and b. Thus contest competition is indicated by values of b 1 and scramble compe-
 tition by values b > 1. However, the slope of a plot of k-value against log density for
 this model increases without bound as density increases, and consequently the distinction
 between contest and scramble is not as sharply defined as in the model discussed above.
 Even for values of b < 1, sufficiently high values of N (density) in eqn (7) can cause a
 reduction in the number of survivors, a phenomenon usually associated with scramble
 competition.

 C3
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 FIG. 6. The effects of the parameters a and b in the density dependent model entry 5 of Table 1.
 Curves I (a = 0.01, b = 1) indicate contest competition and curves II and III (b = 5) indicate
 scramble competition. In curve II, a = 0.01 so that density dependent mortality is 50%
 at N = I/a = 100. In curve III, a = 0-02 and density-dependent mortality is 50% at N= 50.

 See text for further discussion.
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 Models for density dependence

 In order to more fully understand the descriptive abilities of the models in Table 1 it
 is useful to relate them to each other via eqn (1). Thus entry 4 (eqn 7) may be expanded
 in Taylor series and truncated after the first order term to obtain entry 5. When the
 parameter b of entry 4 is set equal to unity entry 2 is obtained, or from a truncated Taylor-
 series expansion entry 3 is obtained. The other models of Table 1 are less clearly related
 to the general model of entry 4. Entry 1 is a linear model on logarithmic scales of density
 and proportionate survival and arises from the linear k-value analysis for density
 dependence of Varley & Gradwell (1963). In order to overcome some of the restrictions
 of this particular model, Hassell (1975) introduced entry 6. Entry 7 has been used to
 describe symmetric sigmoid curves of proportionate survival against density (e.g. Ullyett
 1950; Pennycuik, Compton & Beckingham 1968).

 A QUALITATIVE COMPARISON OF THE MODELS

 To evaluate the general descriptive abilities of these models one should consider the
 different types of density dependent curves that they can describe. This is most easily
 discussed with reference to two specific ways of expressing density dependence.

 (1) Consider a plot of proportionate survival (S/N) against density (N). Such a plot
 may appear as a monotonically decreasing curve (Figs 2(a) and 5(a)) or as a non-
 symmetric sigmoid curve (Figs 2(b), (c)). A simple mathematical way to express the
 difference between these two types of curves is to consider the second derivative of
 (S/N) with respect to N (i.e. d2(S/N)/dN2). When the curve of proportionate survival is
 of the monotonically decreasing form, this derivative is positive over the entire range of
 density. When the curve is of the sigmoid type, however, this derivative changes from
 negative to positive as density increases. Thus, a general model for density dependence
 would have a form such that d2f(N)/dN2 could either be positive for all values of N
 or could change from negative to positive as N increased. Table 1 gives the potential
 signs of d2f(N)/dN2 for the models presented there. All of the one-parameter models
 (entries 1, 2 and 3) and one of the two-parameter models (entry 6) have forms for which

 TABLE 1. Some density dependent functions f(N) (eqn (1)) and their related
 functions, u(N) (eqn 5), and their second derivatives. A more complete list of

 references concerning each model is given by May & Oster (1976)

 Sign of Sign of
 Entry f(N) u(N) = k-value d2f/dN2 d2/UdN2 Authors

 1 N-b b In N + - Varley & Gradwell
 (1960)

 2 exp(-aN) aN + 0 MacFadyen (1963);
 Cook (1965); May
 et al. (1974); May
 (1975, 1976)

 3 (1 + aN)-1 ln(l + aN) + - Skellam (1951); Pielou
 (1969)

 4 exp(-aNb) aNb + - + - This paper
 5 (1 + (aN)b)-1 ln(1 + (aN)b) + - + - Maynard Smith &

 Slatkin (1973)
 6 (1 + aN)-b b ln(1 + aN) + - Hassell (1975); Hassell,

 Lawton & May (1976)
 7 (1 + exp(bN- a))-l ln(1 + exp(bN- a)) + - + Ullyett (1950);

 Pennycuik, Compton
 & Beckingham
 (1968); Usher (1972)
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 this derivative is always positive, and consequently can only describe monotonically
 decreasing curves of proportionate survival against density. The remaining two-parameter
 models (entries 4, 5 and 7) can describe both monotonic and sigmoid curves of propor-
 tionate survival. Entry 7 describes these curves as symmetric, which does not appear to
 be a general feature of density dependence data.

 (2) Consider a plot of k-value (=,u(N)) against density. A general model would be
 required to describe curves that increase both logarithmically (Figs 4(a) and 5(c)) and
 exponentially (Figs 4(b), (c), (d)). Expressed mathematically, the second derivative
 d2u/dN2 may be either negative or positive. Table 1 also gives the potential signs of
 these derivatives. Only entry 4 and its Taylor-series approximation, entry 5, have forms
 which may describe both types of curves for 8u(N). Entries 1, 3 and 6 describe only
 logarithmic curves of 8u(N) against density, entry 2 depicts these curves as linear, and
 entry 7 describes only exponential increase for p(N).

 A QUANTITATIVE COMPARISON OF THE MODELS

 The discussion above indicates that two of the models in Table 1 (entries 4 and 5) have
 forms which are particularly flexible, being able to describe a wide range of forms of
 density dependence. Differences in the descriptive ability of the various models may be
 further clarified by fitting the models to various sets of data. For this purpose, a selection
 of data showing density dependent mortality has been taken from the entomological
 literature and supplemented by further experiments carried out as part of this study.

 The data may be divided into two categories. The first set of data (Table 2) arises
 from experiments in which varying numbers of individuals, usually in an early develop-
 mental stage such as eggs or larvae, have been confined with a fixed amount of food,
 and at some later stage or time the survivors scored. The experiments conducted here
 on Stegobium paneceum L., Lasioderma serricorne (F.), Tribolium castaneum (Herbst.)
 and Tribolium confusum Duval are typical examples. Eggs were collected by sieving
 flour from oviposition chambers at 24-h intervals. Varying numbers of 0-24-h-old eggs

 TABLE 2. Some experimental laboratory studies on the effect of density on survival
 in insects

 Species Author(s)
 Coleoptera

 1. Lasioderma serricorne (F.) This study
 2. Stegobiumpaneceum L. This study
 3. Rhyzopertha dominica (F.) Crombie (1944)
 4. Tribolium castaneum (Herbst.) This study
 5. Tribolium confusum Duval This study

 Lepidoptera
 6. Ephestia cautella Walker Takahashi (1956)
 7. Anagasta kuhniella Zell. Ullyett & van der Merwe (1947)
 8. Plodia interpunctella Hubn. Snyman (1949)
 9. Sitotroga cerealella (Oliv.) Crombie (1944)

 Diptera
 10. Chrysomyia albiceps Wied. Ullyett (1950)
 11. Chrysomyia chloropyga Wied. Ullyett (1950)
 12. Drosophila melanogaster Mg. Miller (1964)
 13. Drosophila simulans Sturtevant Miller (1964)
 14. Lucilia cuprina Wied. Nicholson (1954)
 15. Lucilia serricata Mg. Ullyett (1950)
 16. Musca domestica L. strain Bell Sullivan & Sokal (1963)

 T. S. BELLOWS JR  147
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 Models for density dependence

 TABLE 3. Sources of data on density dependent mortality from long-term censuses
 of insect populations. Values for )A are taken from Hassell, Lawton & May (1976).
 Values for the parameters d and b were obtained by fitting model 5 of Table 1 to the

 data. Numbers correspond to the numbered points in Fig. 9

 Species

 Hemiptera
 1. Anthocorus confusus (Reuter)
 2. Leptoterna dolobrata (L.)
 3. Neophilaenus lineatus (L.)
 4. Saccharosydne saccharivora (Ww.)

 Coleoptera
 5. Callosobruchus chinensis (L.)
 6. Callosobruchus maculatus (F.)
 7. Callosobruchus maculatus (F.)

 Strain aQ
 8. Leptinotarsa decemlineata (Say)

 Lepidoptera
 9. Acleris variana (Fern.)

 10. Anagasta kuhniella (Zell.)
 11. Erannis defoliaria (Clerk)
 12. Hyphantria cunea Drury
 13. Operophtera brumata (L.)

 Diptera
 14. Erioischia brassicae (L.)

 A dA b  Author(s)

 1.6 1.0 2.7 Evans (1973)
 2.2 2.2 1.4 McNeill(1973)
 9.2 1.4 0.7 Whittaker (1971)
 13.5 1.0 2.8 Metcalf (1972)

 22.5 15.5 1.0 Fujii (1968)
 32.5 18.4 1-9 Utida (1967)
 37.5 29.5 1.6 Fujii (1967)

 75.0 75.0 4.8 Harcourt (1971)

 13-0
 8.6
 3-0
 1.7

 5.5

 3.5 2.7 Morris (1959)
 1.1 2.4 Hassell & Huffaker (1969)
 1.8 2.0 Ekanayake (1967)
 1.7 1.3 Ito, Shibajaki & Iwahashi (1969)
 5.0 0.4 Varley & Gradwell (1968)

 3.3 2.1 1.7 Mujerji (1971)

 were then isolated in glass tubes (2-2 x 7 cm) with 0.5 g medium (commercial fine
 white flour with added yeast, 10% by weight) and the glass tubes closed with cotton
 wool and kept at either 28.5 ?C, 70% relative humidity (Stegobium paneceum and
 Lasioderma serricorne) or 30 ?C, 70% relative humidity (Tribolium species). After
 the adults eclosed, the total number of survivors in each tube were scored. The second
 set of data (Table 3) was compiled from long-term censuses of insect populations and
 is abbreviated from a similar list given by Hassell, Lawton & May (1976). The examples
 come both from field studies and studies of populations maintained in the laboratory
 and include only those cases which demonstrated density dependence when analysed by
 the method discussed below.

 The two parameter models of Table 1 (entries 4, 5, 6 and 7) have been fitted to these
 data. The models were used in the form of eqn (1) with the addition of a parameter for
 density independent mortality, d, so that

 S = dNf(N).  (8)

 As before, d is constrained such that 0 < d < 1. The parameter d is an important addition
 to the models when they are to be fitted to data. If some degree of density independent
 mortality is present, the omission of this parameter would result in an overestimate of the
 amount of density dependence present. These models are intrinsically non-linear as they
 cannot be manipulated into forms which are linear in the parameters. Indeed, even the
 one-parameter models in Table 1 may be considered intrinsically non-linear as they may
 not be transformed to linear forms without the use of ratios such as S/N or N/S. These

 ratios may be subject to considerable biases, particularly when the initial density is
 estimated from data (Atchley, Gaskins & Anderson 1976). Consequently, the fitting
 procedure involved minimizing a residual sum of squares of a non-linear model, and the
 descent method of Fletcher & Powell (1963) was used. This iterative method gave rapid
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 convergence and appeared generally robust when applied to all the models except model 6,
 where it was subject to rounding errors. To overcome this problem the conjugant gradient
 method of Powell (1964) for minimizing a general function was used with model 6 to
 find the minimum residual sum of squares. In all cases, the fitting was by unweighted
 least squares so that each observation was treated equally. A copy of the computer
 programme used is available on request.

 The fit of the models to the data is most easily compared by considering the percent
 of the variance explained by each model for each set of data. In linear regression analysis
 this is usually done by considering the parameter r2,

 r / , I residual sum of squares (9) r2-100 1- . (9)
 sum of squares about the mean

 The sum of squares in the denominator of the fraction in eqn (9) is taken about the
 mean observed value of the dependent variable, Y, and the null hypothesis is that there
 is no dependence of Y on the independent variable X:

 H:Y= Y. (10)

 In the analyses presented here, the null hypothesis is that the observed mortality is due
 only to density independent factors causing a constant proportionate survival, sayp:

 Ho:S=pN. (11)

 Consequently, an appropriate measure of the percent variance explained by the various
 density dependent models is

 100/ I - residual sum of squares (12) r'=100 1- . (12)
 sum of squares about the line pN

 The sum of squares in the denominator of the fraction in eqn (12) is the residual sum
 of squares from a straight line through the origin fitted to the data, and the numerator
 is the residual sum of squares obtained by fitting a density dependent model to the data.
 The values for percent variances explained shown in Tables 4 and 5 have been computed
 in this way.

 The definition of the null hypothesis in eqn (11) provides a method for determining
 whether or not a particular data set demonstrates density dependence (Fig. 7). The null
 hypothesis model, S = pN, may be fitted to the data and the residuals plotted against
 the densities at which they occur. If the plot of residuals shows no systematic pattern
 (Fig. 7(d)), there is no evidence that the model of density independent mortality is
 inadequate (Draper & Smith 1966). If some pattern does appear, such as a negative
 trend in the residuals (Fig. 7(b)), a more complex relationship between number of survivors
 and density (i.e. density dependence) may be assumed. Some of the data considered by
 Hassell, Lawton & May (1976), when examined in this way, did not show any evidence
 of density dependence and consequently were not included in Table 3.

 The values of percent variance explained given in Tables 4 and 5 shows that all four
 models usually explained a similar amount of variance; for some data sets there was
 practically no distinction between some of the models. Models 4 and 5 gave better fits
 to most of the data than did 6 and 7. Model 5 provided the best fit to 19 of the data
 sets, model 4 best described five data sets, and models 6 and 7 best described one and
 five data sets respectively.
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 FIG. 7. A test for density dependence applied to two sets of data. (a) and (b) are for pupal
 predation of Operophtera brumata (Varley & Gradwell 1968); (c) and (d) are for parasitism
 of third instar Parlatoria oleae (Colvee) by Aphytus maculicornis (Masi) (Huffaker &
 Kennett 1966). After fitting the model of density independent mortality S = pN to the data
 (solid lines in (a) and (c)), residuals are plotted against density. A negative trend in the
 residuals indicates density dependence in (b). If the residual plot does not show any trend
 (d), then the model S =pN adequately describes the data. The broken line in (a) is the best fit
 of the density dependent model entry 5 of Table 1 (d = 0.913, a = 0-174, b = 0-428).

 In several analyses, the best fit to the data occurred when the parameter d was
 constrained to unity (higher values of d give better fits to the data), and these are indicated
 in Tables 4 and 5. When this occurred for models 6 and 7 it was often a result of

 the forms of these models being inappropriate for describing a particular data set (i.e.
 applying model 6 to data which showed an exponential plot of k-value against density
 or model 7 to data which showed a logarithmic plot of k-value against density). The
 form of model 6 also caused unreasonable estimates of the parameters a and b when the
 data indicated an exponential curve of k-value against density. In these cases, the estimated
 value of the parameter b was very high (>1000) and the value for a was very small
 (<10-6), resulting in an approximately linear relationship between k-value and density
 for this model.

 The fit of the four models to the data on survival of Stegobium paneceum and
 Tribolium castaneum are shown in Fig. 8 in terms of the number of survivors against
 density (Figs 8(a) and (c)) and as k-value against density (Figs 8(b) and (d)). Models
 4 and 5 described both sets of data well and there was little difference in their predicted
 curves. Model 6 described the Stegobium data well but did not give a good description
 of the Tribolium data. Model 7 provided a poor description of the Stegobium data but
 described the Tribolium data well.

 Following Hassell, Lawton & May (1976), the fitted parameters from the data in
 Table 3 may be used to characterize the nature of the population dynamics shown by
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 TABLE 4. The percent of the variance explained by the four two-parameter
 density dependent models of Table 1 applied to the data from the sources given

 in Table 2

 Species

 Coleoptera
 1. Lasioderma serricorne

 2. Stegobium paneceum
 3. Rhyzopertha dominica
 4. Tribolium castaneum

 5. Tribolium confusum
 Lepidoptera

 6. Ephestia cautella
 7. Anagasta kuhniella
 8. Plodia interpunctella
 9. Sitotroga cerealella

 Diptera
 10. Chrysomyia albiceps
 11. Chrysomyia chloropyga
 12. Drosophila melanogaster
 13. Drosophila simulans
 14. Lucilia cuprina
 15. Lucilia serricata
 16. Musca domestica

 Number of times each model explains
 maximum variance

 4

 96-35
 62-36*
 93-65*
 90-03
 82-67

 95-28*
 97-92*
 98-63
 95-03*

 99-82
 98-72
 98-26
 98-35
 99-31*
 96-44
 99-54

 2

 Model (entry in Table 1)
 5

 96-36
 66-57
 98-29*
 90-86
 82-61

 96-93
 98-49*
 99-12
 97-89*

 99-03
 97-61
 99-36
 99-06
 99-60
 95-93
 99-29

 10

 72-78*t
 66-62
 97-25*
 74-43*t
 78-48*t

 92-43t
 97 16*t
 87-08*t
 97-45*

 95-85*t
 89-18*t
 90.30*t
 78-68*t
 95.81*t
 89-65*t
 92-97*

 1

 * Best fit occurred when d = 1.

 t Best fit occurred at unreasonable parameter values for a and b.

 TABLE 5. The percent of the variance explained by the four two-parameter density
 dependent models applied to the data from the sources given in Table 3

 Model (entry in Table 1)
 Species

 Hemiptera
 1. Anthocorus confusus
 2. Leptoterna dolobrata
 3. Neophilaenus lineatus
 4. Saccharosydne saccharivora

 Coleoptera
 5. Callosobruchus chinensis
 6. Callosobruchus maculatus
 7. Callosobruchus maculatus

 8. Leptinotarsa decemlineata
 Lepidoptera

 9. Acleris variana

 10. Anagasta kuhniella
 11. Erannis defoliara
 12. Hyphantria cunea
 13. Operophtera brumata

 Diptera
 14. Erioischia brassicae

 Number of times each model explains
 maximum variance

 4

 88-60
 67-01*
 95-58
 61-14

 97-21*
 973 1*
 86-77*
 97-70*

 68-61
 73-46
 47-02
 89-42*
 46-67*

 5

 88-27
 71-17*
 95-56*
 61-78

 98-84
 99-24
 85-51
 99-05*

 75-43
 73-51
 47-22
 94-89*
 46-67

 6 7

 79-19*
 69-35*
 95-54

 60.21t

 98-84
 99-22
 86-28*

 76-85*t

 69-05

 72-83t
 46-64t
 94-14*
 46-58

 88-79
 57.82*
 94-16
 61-11

 75-64*
 80-40*
 82-59*
 98-68*

 68.41*
 73-52
 46-98*
 76-62*
 43-01*

 23-22 23-13 23-20* 23-06*
 3 9 0 2

 * Best fit occurred when d = 1.

 t Best fit occurred at unreasonable parameter values for a and b.

 6 7

 96-36
 36-67*
 80-03*
 90-32*
 82-60

 95-68*
 93-78*
 98-93
 83-75*

 99-82
 98-37
 97-78*
 98-83
 98-85*
 96-65

 99-60
 3
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 FIG. 8. The predicted curves of the four two-parameter models of Table 1 when fitted to
 the data for Stegobium paneceum (a, b) (contest type competition) and Tribolium castaneum
 (c, d) (scramble type competition) presented as numbers surviving (a, c) or k-value (b, d)
 against density. The models were fitted to the data in (a) and (c) and the estimated parameter
 values were used to provide the curves in (b) and (d). Model 4 (- ): (a) d= 1-00,
 a = 0.676, b = 0.295; (c) d = 0.925, a = 0.000160, b = 2.04. Model 5 (--): (a) d = 0711,
 a=0-110, b=0-950; (c) d=0.800, 0.0149, b=4.21. Model 6 ( ): (a) d=0.691,
 a = 0.113, b = 0.936 (note that in (a) and (b) the predicted curves for models 5 and 6 are
 coincident); (c) d = 1-00, a = 1-65 x 10-8, b = 1-13 x 106. Model 7 (---): (a) d = 100,

 a =-2.21, b = 0-00409; (c) d= 1-00, a = 2.61, b = 0.0448.

 these species. Figure 9 shows the regions of dynamical behaviour of the population
 model (from entry 5 of Table 1)

 N,t+ = dWNt(1 + (aNt)b)-.  (13)

 The boundaries between the regions were found by a linearized stability analysis of
 eqn (13) using the method of May et al. (1974). After weighting the values of A given
 by Hassell, Lawton & May by the density independent mortality estimated by fitting
 entry 5 to the data, the values of the parameters b and dA may be used to position the
 species in Fig. 9. Ten of the fourteen species were placed in the region of monotonic
 damping. Three species were placed in the region of damped oscillations, two of which
 (data sets 6 and 7) are from laboratory populations of the beetle Callosobruchus
 maculatus (F.) which show evidence of this behaviour. The only species placed in the
 region of limit cycles was Leptinotarsa decimlineata (Say), and this is consistent with
 Harcourt's (1971) remarks that populations of this species fluctuate markedly and tend
 to overcompensate from generation to generation.

 The general picture arising from this analysis supports precisely the conclusions reached
 by Hassell, Lawton & May (1976), namely that where density dependence occurs in
 insect populations, it usually acts in an undercompensatory manner. Although eqn (13)
 is probably a better descriptive form than that used by Hassell, Lawton & May (1976),
 there is little difference in the stability diagrams for the two models (compare Fig. 9
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 FIG. 9. The boundaries separating regions of different dynamical behaviours as functions of the
 density dependent parameter b and the effective rate of increase dA for the population model of

 eqn (13). The numbered points correspond to the data sets of Table 3. See text for discussion.

 with their Fig. 2). The notable similarity of this analysis to that of Hassell, Lawton and
 May is further emphasized by the similar placement of the species in the two diagrams.

 CONCLUDING REMARKS

 The one-parameter models of Table 1 all have forms sufficiently restrictive to exclude
 them as general descriptive models of density dependence. The two-parameter models
 6 and 7 also have forms which are only capable of describing certain types of density
 dependence. Although these models do not have general forms, they may be useful in
 describing data when their forms are appropriate, such as describing logarithmic
 curves of k-value against density (model 6) or symmetric sigmoid curves of proportionate
 survival against density (model 7). Two of the models in Table 1 (models 4 and 5) may
 be considered as having a general form. Of these, model 5 has a more flexible and better
 descriptive form and seems to be less prone to overestimates of density independent
 survival than model 4. In addition, model 5 describes a relationship between k-value
 and log density which is approximately linear at high densities. This may play an important
 role in the description of data in light of the view of some authors that such plots are
 linear at high densities (Varley, Gradwell & Hassell 1973; Hassell 1975; Stubbs 1977).

 One of the major uses of the models in Table 1 is in describing the affects of density
 in processes affecting biological populations, and often this is an initial step in the
 development of a population model. The value of this inductive approach was recognized
 by Varley & Gradwell (1968) and Hassell & Huffaker (1969), and these studies led to
 further modelling efforts by Benson (1974) and Podoler (1974). In addition to this
 descriptive use, the simple algebraic forms of the models in Table 1 lend themselves well
 to analytical investigations of their properties while still encapsulating the requisite range
 of density dependent responses. This property has been of enormous value in furthering
 the understanding of the consequences of density dependence both in single-species
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 populations (e.g. May et al. 1974; Hassell, Lawton & May 1976; May & Oster 1976)
 and in more general multispecies situations (e.g. Hassell & Comins 1976; Comins &
 Hassell 1976; Southwood & Comins 1976). The analytical nature of these models also
 permits the dynamical behaviour of populations to be predicted from estimated parameters
 (e.g. Hassell, Lawton & May 1976) without resource to lengthy simulation. Hence,
 they are admirably suited for use in understanding the dynamics of a variety of populations
 where, although the mechanisms involved may not be clearly understood, data on the
 effect of density on mortality or reproductive success is available.

 In any investigation, the use of a general form (such as model 5) is particularly
 important where the model is to be applied to species with notably different density
 dependent responses. This provides easy comparisons between species in terms of descrip-
 tive parameters and is also important during the development of population models for
 the species. Any differences in model behaviour may, therefore, be attributed to actual
 species differences and not to biases in the descriptive ability of the model. Such an
 approach has recently been undertaken in the development of single-species and two-
 species models for laboratory populations of two stored-product beetles, Callosobruchus
 chinensis (L.) and C. maculatus, and the results of these studies will be reported in future
 publications.
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